Crystal Field Theory: Octahedral Complexes

Approach of six anions to a metal to form a complex ion with octahedral structure

Splitting of d energy levels in the formation of an octahedral complex ion

1

Factors that Affect Crystal Field Splitting

1) Nature of the ligand:

Spectrochemical Series

$$\begin{array}{c} I^- < Br^- < S^{2-} < \underline{S}CN^- < Cl^- < N\underline{O}_2^- < N^{3-} < F^- < OH^- < C_2O_4^{\ 2-} < O^{2-} < H_2O \\ < \underline{N}CS^- < CH_3C \equiv N < py < NH_3 < en < bpy < phen < \underline{N}O_2^- < PPh_3 < \underline{C}N^- < CO \\ & \text{increasing } \Delta_o \\ & \text{weak field ligands} & \text{strong field ligands} \end{array}$$

- Ligands with the same donor atoms are close together in the series.
- Ligands up to H₂O are weak-field ligands and tend to result in high-spin complexes.■
- Ligands beyond H₂O are strong-field ligands and tend to result in low-spin complexes.■
- CFT can not explain why certain anionic ligands lies lower in the series than neutral ligands, although reverse should be expected based on electrostatic interactions.
- It also can not explain why OH⁻ lies lower in the series than H₂O and NH₃, although reverse should be expected, since dipole moment of OH⁻ is greater than H₂O and NH₃.

Factors that Affect Crystal Field Splitting

Nature of Ligand

Complex	Δ _o (cm ⁻¹)
[CrCl ₆] ³⁻	13640
[Cr(H ₂ O) ₆] ³⁺	17830
[Cr(NH ₃) ₆] ³⁺	21680
[Cr(CN) ₆] ³⁻	26280

Oxidation State of Metal Ion

Complex	Δ _o (cm ⁻¹)
[Fe(H ₂ O) ₆] ²⁺	9400
[Fe(H ₂ O) ₆] ³⁺	13700
[Co(H ₂ O) ₆] ²⁺	9300
[Co(H ₂ O) ₆] ³⁺	18200

Nature of Metal Ion

Complex	Δ _o (cm ⁻¹)
[Co(NH ₃) ₆] ³⁺	24800
[Rh(NH ₃) ₆] ³⁺	34000
[Ir(NH ₃) ₆] ³⁺	41000